$(y_{\alpha\bar{\ell}})$ nod 4 **Groups** (3) HaeG, $3a^{1}$ eG s.t. Sunday, January 30, 2022 11:18 AM $a * a' = a * a = e_b$ (Inverse) nod 5 X 11 2 3 4 $+0132$ $\sqrt{452}$ $\frac{1}{2}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 3 \\ 1 & 2 & 1 & 3 \end{pmatrix}$ OIO 132 $Ext: (ZnZ, t)$ is a group, where ZnZ $\begin{array}{c|cccc}\n1 & 1 & 2 & 0 & 3 \\
3 & 3 & 0 & 2 & 1\n\end{array}$ is set of integers modulo $n(l \equiv n+l \mod n)$ $1. + is associated with $ve$$ 2310 $a \cdot e = 0$ is identity 44321 - Any patterns? $3. \gamma + (n-\gamma) = n \equiv 0 \mod n$ Def A group (Gx) is a set 6 w/ an \Rightarrow Y^{-1} = $n-y$ dihedral group operation \ast : $6\times 6 \rightarrow 6$ such that the $Ex d: (D₄, o)^{2}$ is a group, where $D₄ = Set$ following axioms are satisfied of symmetries of a square, $o =$ composition $\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1$ of symmetries (composing two symmetries gives you a symmetry) Here are examples of ele qu' (2) I special element egge 6 s.t. tyeb reflection: $r_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ rotation: $\mathcal{O}_{\mathcal{H}_2}$: $|\square^2$ $e_{6}*y = y*e_{6}=y$ (Identity) $r_2 = 7$

o = fanction composition Examples of Groups Different ways to represent ele of Sn Labe I vertices $0 - 4$. Two symmetries are the same if they do the same thing on Two line notation: $\overline{\lambda} = (\begin{array}{cc} 2 & 3 & 4 \\ 2 & 4 & 13 \end{array})654$ the labels. Γ_{1} Γ_{2} $(\sqrt[3]{\frac{1}{4}})^{2}$ Γ_{1} $(\sqrt[3]{\frac{1}{4}})^{2}$ Γ_{2} One line notation: $\pi = \frac{\mathfrak{d}413}{5}654$ $= 0.(\frac{1-\lambda}{4})$ "the top row has to be 1234 so it's redunded 1. Matrix multiplication is associative. Q: Is $\phi = \frac{\partial (4)}{\partial x} \cos \theta$? 1 Function compusition is assuc $a \cdot e\left(\frac{1}{4}a^{2}\right) = \frac{1}{4}a^{2}$ "do-nothing" $A \cdot C = \begin{pmatrix} 1 & a & n \\ 1 & 2 & n \end{pmatrix}$ 3. Inverse of $4604 = 1$ 'reverse/undo 4^{13} 3. Inverse of $\pi = \text{reflect about horizontal}$ axis and rearrange columns until 1,2,... $e.9.$ θ_1^{-1} = rotate 90° clockwise, n_1^{-1} = n_1 π^{1}_{m} (a 4 1 3) -7 (3 4)
 π^{1}_{m} (1 2 3 4) -7 (3 4) Ex 3: Symmetric group (Sn, o), where $S_n = \{f: \{(a_1, a_1, \ldots, n)\} \rightarrow \{(1, a_1, \ldots, n)\} \}$ is a bijection

Group Tables $Hw!$, Show \int Sn $I = n!$ Remark; Ex2, Ex3 are Coxeter groups - Given a finite group, we can construct it's group table by listing out it's elements in row + column and writing result of grp nultiplication
 g_1 e 9. 92...915
 g_1
 \vdots
 g_k
 \vdots
 g_k (look back at grp tables for $\partial f_{\alpha p}$) Lem 1: Every element of a grp appears exactly once in each row and col of it's

 grp table. Ex4: Fill out the group table using $\begin{array}{c|c} x e & a & b \\ \hline c & c & b \end{array}$ Len \Box $\begin{array}{c|c}\nC & C & A & b \\
C & A & b & C \\
D & b & C & A\n\end{array}$ $b \mid b \mid c \mid c$ isomorphism => only one grp of order 3 up to - In general can play same game w/nure elements, sort of like sudoku $Q: What is grp table for $0q$ or Sq)$ A: Quite telious to compute, is there a nore compact way to present the 952 405

Presentation

\nDeef A preservation of a 91P 6, is a set 5

\nof generators for G along with a set R of minimal generators for G along with a set R of minimal operators (and other calculus)

\nbinomial operators (or 6 along with a set R of a)
$$
T(\overrightarrow{v}+\overrightarrow{v})=T(\overrightarrow{v})+T(\overrightarrow{w}), \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n
$$

\nbinomial operators (or 6 along with a set R of a) $T(\overrightarrow{v}+\overrightarrow{v})=T(\overrightarrow{v})+T(\overrightarrow{w}), \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$

\nbinomial matrix

\nfor $G = \langle S | R \rangle$ from these decimal (b) $T(c\overrightarrow{v}) = c T(\overrightarrow{v}), c \in \mathbb{R}$

\nFrom the set C is the same as follows:

\n $S_n = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ of R in and a basis $B_n = \{w_1, \dots, w_n\}$ of the matrix $S_n = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$

\nThen, $S_n = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ of R in and a basis $B_n = \{w_1, \dots, w_n\}$ of the matrix $S_n = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$

\nThen, $S_n = \$

<u> Elemento de la contrada de la con</u>

a group homomorphism Representations -5_a is linear by direct computation $E_X 8$: The map (3.1×10^{-10})
 $E_X 8$: The map problem is now linear $S_{\alpha} (v+w) = V+w - \frac{\lambda (v+w)}{\lambda} \frac{\alpha}{\alpha},$
 $= V - \frac{\lambda (v\alpha)}{\lambda} \frac{\lambda (v+w)}{\lambda} + w - \frac{\lambda (w,\alpha)}{\lambda} \frac{\lambda (v+w)}{\lambda}$ $D_{4} \longrightarrow GL(\mathbb{R}^{2})$ $n \longrightarrow 5(5)$ r_{2} - $\frac{1}{2}$ $s_{(1)}$ Remark: We just showed that all ele of θ_{1} (cos $\frac{1}{4}$ -sin $\frac{1}{4}$)
sin $\frac{1}{4}$ cos $\frac{1}{4}$) Det are linear maps. Instead of thinking Def are linear minps.
of clonents of Oy abstractly, can think of them is called the geometric ot elements of uy ansi
as convete matrices. Formally, representation of $\nabla4$. Def A representation (V, p) of a group G is a vector space V along with